Chapter 4

Representing Functions

4.1 Robinson Arithmetic

We start by describing a first order theory called Robinson Arithmetic.

Definition 1.1: Robinson Arithmetic

The signature of the language is L4 = {0, 5, +, -} where

o ( is a constant symbol, o + and - are binary function symbold?]

o S is a unary function symbol%}

The axioms are

axiom 1. Vo Sx #0

axiom 2. Ve Jy (z # 0 — Sy = x)
axiom 3. Ve Vy (Sz =Sy —» xz=y)
axiom 4. Vr z+0 =2

axiom 5. Vo Yy (erSy = S(Iﬂﬂ/))
axiom 6. Vr z-0 =0

axiom 7. Va Yy (mSy = (a:y)+:z:>

“for any terms of £ t, we use the notation St instead of S(t).
*for any terms of £ 4 to, 1, we use the notation to+t1 (respectively to-t1) instead of +(to, 1) (respectively

“(to, t1))-
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Example 1.1

The standard model of Robinson Arithmetic is
<N7 07 S’ s >

where S is the successor function, + is the usual addition, and - is the customary multi-
plication.
By abuse of notation we identify N with the model (N, 0, S, +,-). So that, for instance, we
will write

NEe

instead of the correct notation
<N)O7 S7 +7 > ): ®.

Example 1.2

A very simple non standard model of Robinson arithmetic M in which

o S* admits a fixed point.

M

o - is not commutative.

M = (N {a}, 0%, 5%, +*,-)

Where 0* = 0 and the operations S, +*, - are defined the usual way on the integers.
ie

o S“IN=S§ o+ I NxN=+ o *INxN=-
And when the unique non standard integer a is involved:

o S"a=a o a*a=a (any a € Nu {a})

o a+"a = a+"a =a (any a € Nu {a})

oa"0=0 o aa=a (any a € (N {0}) U {a})

We verify that
M = Rob.
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axiom 1. since the only non standard integer verifies S*a = a we have

MEVe Sz #0

axiom 2. since every standard integer different from 0 has a predecessor, and S*a = a,
we have

MEVYzr Iy (z#0—> Sy =x)
axiom 3. holds for standard integers, and for every n € N we have S*a # S*n, thus

MEVz Vy (Sz =Sy -z =y)

axiom 4. holds for standard integers, and we have a+*0 = a, hence

MEVZ z+0=1x

axiom 5. if k,n € N, then k+"S*n = S*(k+*n) holds. If o € Nu {a}, we have

o at+"S"a=a o at+"S"a = at+"a =a

o S"(a+"a) = SMa =a o S*"(a+"a) = SMa =a

therefore we have

M EVz Yy (:U+Sy = S(x—I—y)).
axiom 6. if a € Nu {a}, we have a-*0 = 0. Thus

MEVzz0=0

axiom 7. if k,ne Nand a e Nu {a}, then

o aS"a =a o (aMa)+"a=a o k~S*n = (k*n)+"k
o aMS"a =a o (*a)+"a =a
so we have

M E=Vz Yy <w-Sy = (:c~y)+a:>.
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Notation 1.1

For any integer n, we write n for the £ 4-term S...S0.
—

n

Example 1.3

Let us show that the following holds for all integers k:

Rob. + Vo (0+z =k — z=k) (4.1)

We will make use of the excluded middle:
F Vx (azz() v :U;é())

and distinguish between the two cases.
The proof is by induction on k:

if k =0:
if x = 0: since +, 0 = 0 holds, we obtain
Rob. - 0+0=0 — 0=0
if x # 0: by @ Vo Jy (x # 0 —» Sy = x) it is enough to show
Rob. + Vy (0+Sy =0 — Sy =0)
by @ YV Vy (33+Sy = S(:Eer)) this comes down to establishing
Rob. + Yy (S(0+y) =0 — Sy= 0)
which is immediate by @ Ve Sx #0 .
ifk=n+1:
if x = 0: we need to show

Rob. - 0+0=n+1 — 0=n+1.
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By @ Vz x+0 = x this comes down to showing
Rob. . 0=n+1 — 0=n+1;
which obviously holds since the following already holds:
. 0=n+1 — 0=n+1.
if x # 0: by @ Vo Jy (x # 0 — Sy = x) it is enough to show
Rob. . Yy (0+Sy:n+1 — Sy=n+1)
by @ Vo Yy (:U+Sy = S(x—l—y)) this comes down to establishing

Rob. + Vy (S(0+y)=n+1 — Sy=n+1)
which is exactly
Rob. + Vy (S(0+y) = Sn — Sy = Sn)
by @ Vo Yy (S = Sy — x = y) this amounts to showing
Rob. + Vy (0+y=n — Sy = Sn).
The induction hypothesis gives
Rob. + Yy (O+y=n — yzn)

from where we immediately get what we want.

Example 1.4

Let us show that the following holds for all integers k:
Rob. . VaVy (Sy+z =k — S(y+z) =k). (4.2)
We make use of the excluded middle:
- Vo (z=0 v z#0)

and distinguish between the two cases.
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if x = 0: we need to show

Rob. + Yy (Sy+0=k — S(y+0) = k)

which is immediate by Ve z+0=2x .
if x # 0: it is enough to show
Rob. - VyVz (Sy+Sz =k — S(y+Sz) =k).
The proof goes by induction on k:

if k = 0: we need to show
Rob. + VyVz (Sy+S52=0 — S(y+Sz) =0).
By @ Vo Yy (:U+Sy = S(:L‘+y)) this comes down to
Rob. + VyVz (S(Sy+z) =0 — S(y+S5z) =0)

which trivially holds by (1) Vz Sz #0.

if k =n + 1: we need to show

Rob. + VyVz (Sy+Sz=n+1 — S(y+Sz) =n+1).
By @ Vo Yy (:U+Sy = S(x+y)) this comes down to
Rob. + VyVz (S(Sy+z) = Sn — S(y+Sz) =n+1).
By @ Vo Vy (Sz = Sy — x = y) this amounts to proving
Rob. + YyVz (Sy+z=n — S(y+Sz) =n+1).

if z = 0: we need to show

Rob. + Vy(Sy+0=n — S(y+S50) =n+1).

By @ Vx z+0 = x and @ Va Vy (z+Sy = S(z+y)) this comes down
to showing
Rob. Vy(Sy =n — SSy=n+ 1).

which holds by definition.
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if z # 0: what we need to prove is equivalent to
Rob. . VYyvz' (Sy+Sz' =n — S(y+SS7)=n+ 1).
By @ Vo Yy (Sx = Sy — x = y) this comes down to showing

Rob. k. Vyv2' (Sy+S2' =n — y+552' =n).
The induction hypothesis yields

Rob. . Yy¥z' (Sy+S82' =n — S(y+S2') =n).

from where we easily get the result by @ Vo Vy (z+Sy = S(z+y)) .

4.2 Representable Functions

Definition 2.1

Let f e NN and o(zo, 21, ... ,Tpn) be any L 4-formula whose free variables are among
{.21?0,.1‘1, N ,:L‘n}.
o(xo, 1, - . ., xy) represents the function f if for all iq,...,i, € N

Rob. . Vxq <f(i1, - ,in) = X9 < QD(.CC(),Zj, e ,in)>.

Definition 2.2

Let A € N"and ¢(z1,...,zy,) be any L 4-formula whose free variables are among {x1, ..., z,}.
o(z1,...,xy,) represents the set A if for all i1,...,4, € N we have:

o if (i1,...,in) € A, then Rob. . go(il,...,z'n);

o if (i1,...,1n) ¢ A, then Rob. . —¢(i1,...,in).

Proposition 2.1

For any A < N,

A is representable if and only if x4 is representable.
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Proof of Proposition E

(=) If A is represented by ¢(x1,...,z,), then x4 is represented by
(zo=1Ar@(1,...,20)) v (20 =0 A —p(z1,...,2,)).
(<) If x4 is represented by ¢(zo,z1,...,Ty), then A is represented by

©(S0,21,...,2p)-

Example 2.1

The constant function f € NN*) defined by f(iy,...,in) = k (any iy,...,4, € N) is repre-
sented by the following formula of the form ¢ (z,i1,...,i,):

o = k‘
It is enough to verify
Rob. - Vo (f(il,...,in) — 2 e @ = k)

which is exactly
Rob. . Vg (k =g« Ty = k)

Example 2.2

The projection 77’ € N®")is represented by the formula:
o = ij.
It is enough to verify

Rob. . Vzxq (71’;1(2'1, ... ,Zn) =Tg <« Tg = Z]>
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i.e.,
Rob. . Vxo (ij =0 «— 9 = Zj>

Example 2.3

The successor S € NV is represented by the formula:
rg = Sr1.
It is enough to verify
Rob. — Vg (S(z) =0« Ty = Si).

ie.,
7 i+1
i —
Rob. | Vo (SS...SO=x0<—>m0=S...SO).

Example 2.4

The addition + € NV ig represented by the formula:
o = T1+x2.
It is enough to verify
Rob. . Vxo <i1 +ig =g« T = il—i—ig) (4.3)
The proof is by induction on is:

i = 0 because of @ Ve z+0 = ¢ we have

Rob. . Yxq (il =Tg < Tg = i1+0)

which is
Rob. . Vzq (il +0=29 «— x¢ = ilJFO)-
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i2=i+1by (5) YaVy (z+Sy=S(z+y)) we have

Rob. + Vg (S(ilJri) =xp «—— To = Z'1+Si)
The induction hypothesis yields
Rob. . Vzq (2'1 +1 =129« 20 = i1+i)
hence we obtain
Rob. — Vxq (S(il +1i) =x9 > xo = i1+Si>
by the very definition of the terms involved we finally have

Rob. +, Vo (il +(i+1) =z —> z0 = i1+(i + 1)).

Example 2.5

The multiplication - € N g represented by the formula:
To = T1-X3.
It is enough to verify
Rob. . Vo (z’l Ciy = g« @y = il-ig). (4.4)
The proof is by induction on is:
ip=0
because of @ Vx -0 =0 we have
Rob. . Vzxq (O =x9 «— Tg = i1~0)

which is
Rob. . Vxq (il -0=xp «— 20 = iyO).

iag=1i+1
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by @ Vo Vy (z-Sy = (z-y)+z) we have
Rob. . Vo (i1~Sz’ — 20 > 79 = (il-i)Jril)
which is exactly
Rob. +, Vo (z’l»(i +1) = zg > x0 = (il'i)Jril)
The induction hypothesis yields
Rob. + Vzxq (il Sl =X —— To = 212)

so we have
Rob. — Vo (il-(i + 1) =29 <> 2o = (il 0 i)+i1>

by @ Vz Vy (z-Sy = (z-y)+z) and li we have

Rob. . Vo <(¢1 24) + i1 = Tg > Tp = (i1 - i)+i1)
which is exactly

Rob. +. Vg (il (i +1) = zg > 70 = (iy -i)+i1>
and we finally obtain

Rob. . Vzq (il (Z+1) =Tg < X0 =i1'(i+1)).

Lemma 2.1

The set of representable functions is closed under composition.

Proof of Lemma E
Assume f1,..., fn€ NO) and g e N are represented respectively by

Spfl(x()?xlv"' 7$p)7'"agpfn(x(]axl’"'axp)
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and ¢g(xo, 21, ...,Ty). i.e., we have for all integers i1,...,ip, k1,...,k, and 1 < j < n:

Rob. + Vxo (fj(il,...,ip) = g <« cpfj(xo,il,...,ip)>

and
Rob. . Vo (g(kl,...,kn) = zp gog(:cg,kl,...,kn)>.

The function
h=g(fi,...,fn) e NO)

defined by
h(it, ... ip) = g(fi(it, .. ip)s .o, fulit, ... dp))

is represented by

SOh(l’o,ﬂZ’l,...,xp) = 3yl 3y2 3:‘/71( /\ Spfj(ijxla"'axp) N @g(x()aylw"?yn))'

1<j<sn

Indeed, by the very definition of A for every i1,...,%, € N we have

|—C Vl‘() <h(i1,...,ip) =Ty < Hyl Hyg Hyn (Algjénfj(ih""ip) =yj A\ g(yl,...,yn) =l‘0>>.

Therefore

ROb. I—C on <h(i1,,..,i1) =Ty «<— 3y1 3y2 Elyn (Alsjsn(’pfj(yj?il?""il) A Lpg(l’o,yl,,..,yn))).
O

We now turn to minimisation. We need to prove that if A € N"*! is representable and f € N&")

is some total function defined by minimisation the following way:

f(il,...,’in) =,U,/<I (k‘,il,...,in) EA,

then f is representable.

This proof requires some good amount of preliminary work.

Example 2.6

We first notice that

o for all non-zero integer ¢ the following holds

Rob. I i # 0. (4.5)
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To see this, let ¢ = j + 1, by the very definition of the terms involved we have
I ¢=S57
hence by @ Vx Sx # 0 we obtain

Rob. - Sj#0
which gives the result.

o for all integers 7, j such that 7 # j the following holds
Rob. - @ # j. (4.6)

the proof is by induction on min{i, j}:
min{i, j} = 0 : this is case Rob. H i#0 forallieN, i#0.
min{i,j} >0 : set k+1=dandn+1=j.

By @ Ve Vy (Sz = Sy — = =1y) we have

Rob. + Vx Vy (z #y — Sz # Sy).
so that we easily obtain
Rob. . k#mn— Sk +# Sn

which is precisely
Rob. H k#n—>k+1#n+1

i.e.,
Rob. - k#n—i#j.

By induction hypothesis we have
Rob. + k #n,
therefore by modus ponens we finally get
Rob. - @ #j.
o The following holds

Rob. - VaVy (y#0— z+y #0). (4.7)
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By @ Vz Iy (x #0— Sy =2) and @ Vz Vy (z+Sy = S(z+y)) and

@ Vx Sx # 0 we obtain

Rob. +, VaVydz (y #0— (y=Sz A z+Sz=S(x+2) A S(z+z) # 0))
which immediately yields the result.

o The following holds

Rob. +, VaVy (aH—y =0—(z=0 A y= 0)) (4.8)
By previous result Rob. +, VaVy (y #0— x+y # 0) we see that
Rob. — VaVy (a:+y =0—y= 0).

and by @ Vr x+0 = & we obtain immediately the result.

Notation 2.1

We introduce “ z < 2” to abbreviate the formula “ 3y y+x = 2”. We also introduce “

x < 27 for the formula “ dy (y+az =2z A T # z)”.

Example 2.7

We establish
Rob. . Vx —x <0 (4.9)

We recall that x < y stands for “ 3z (z+x =y A T F# y)”.
So we need to prove
Rob. + Vx —3z (z+m =0 A x# ())

which is
Rob. . Vx Vz (z+x #0 v x :O).

This is logically equivalent to

Rob. + Vx Vz (2+:U =0 — z= ()).



Arithmetic 115

Which is also logically equivalent to Rob. — VxVy (y #0— z+y # 0) g

Example 2.8

For all integers n the following holds:

Rob. . Vz [w<n<—>(x:0vx:5'0v va;zn)]. (4.10)
The direction («—)

Rob. . Vx ((m:O v =50 v ... v xzn)—n&cén)

First, by making use of @ Vz z+0 =z and @ Vz Vy (z+Sy = S(z+y)) , the very
definition of £k = S... 50 and “ x < 2":= “Jy (y—i—a: =z A T # z)”, it is straightforward
——

k
to establish by induction on n

Rob. +, Vz [(xz() ve=S0v ... vz=n)—3Iy (y+x=n)].

So it only remains to prove the direction (—)

Rob. . Vzx [wén—»(ajz() v =50 v ... v ZEZ?’L)]

The proof is by induction on n:

n =0 : we need to show
Rob. . Vzx (xéO—»sz)

which is

Rob. + Vzx (Hy y+r=0—0 z = 0)
i.e.,

Rob. + Vo (—-Iyy+z =0 v z=0)
i.e.,

Rob. - Vo (Vyy+z#0 v z=0)
ie.,

Rob. +— VaVy (y+w #0 v = 0)
ie.,

Rob. . VxVy (y+x =0 — x= 0).
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We easily obtain the result by Rob. . VaVy (w+y =0—(z=0 A y= 0))

n=k+1 : we need to show
Rob. + Vz <a:</<:+1—>(:c=0 ve=S0v ... vzz=k v mzk—l—l)).
which really is
Rob. - Vx (Elyy+a::k+1—>(a;:0vx:5'0v vx:kv:c:k+1)>.
ie.,

Rob. . VaVy <y+33=k:—|—1—>(:£=0vx=50v varzk‘vaczk—l—l)).

We make use of the excluded middle:
- Vy (y=0 v y#0)
and distinguish between the two cases:

y = 0: by Rob. . Vzx (0+m=k — x:k) we obtain
Rob. + Vx (0+:U=/~c+1—>w=k:—|—1).
y # 0: by @ Vo Jy (x # 0 —» Sy = x) what we need to show comes down to
Rob. - VzVz (Sz+:c=k+1—>(m=0va:=50v vmzkvx=k+1)>.
by Rob. . VaVy (Sy+:1:= kE — S(y+z) = k‘) we already know that
Rob. + VzVz (Sz+z =k — S(z+z) = k)
so that we need to prove
Rob. - VxVz (S(z+x)=k+l—>(m=0vx=1v vx:kvxzk—i-l)).

By @ Vo Yy (Sz = Sy — = = y) we only need to prove

Rob. — VaVz (z+x=k—>(x=() vez=1lv ... vax=k v :Uzk:—i—l))
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which is
Rob. . Vz (sz+x=k‘—>(x=0vx=1 vV ... vax=k vx=k+1)>
i.e.,
Rob. . Vx (mék—>(ac:0 voe=1lv ... vz=Fk v :c:k+1)>.
By induction hypothesis one has

Rob. + Vz (xgk—»(xz() vaoe=1v ... v mzk))

so that we obtain the result very easily.

So we have proved the following two statements:

(1) Rob. + VaVy <y=0—>(m+y=k‘+1—>x=k+l)) and
(2) Rob. +. VmVy<y¢0—><$+y:k+1—>(aczvazlv...vx-k))).

Therefore, by an immediate application of the excluded middle we have proved the
result.

Example 2.9

For all integers n the following holds:
Rob. - Vo (z<n v n<uz). (4.11)
What we need to show is
Rob. - Vo (Jy y+z=n v Iy y+n=ux).
We make use of the excluded middle:
- Vz (=0 v z+#0)
and distinguish between the two cases.
if x = 0: we need to show

Rob. - dy y+0=n v Jy y+n =0
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which is immediate by @ Vrz+0=2x .
if x # 0: what wee need to prove comes down to
Rob. - Vz (Jy y+Sz=n v Jy y+n = Sz).
The proof goes by induction on n:

if n = 0 : we need to prove

Rob. +— Vz (Hy y+Sz=0 v Jy y+0:Sz).
By @ Vx x+0 = x this comes down to

Rob. - Vz (Jy y+Sz=0 v Jy y = Sz)

which is immediate.

if n =k + 1 : we need to prove

Rob. . Vz (Jy y+Sz=k+1 v Jy y+(k+1)=S5z).

By @ Vz Vy (z+Sy = S(z+y)) and @ Vz Vy (Sx = Sy — x =y) this
amounts to proving

Rob. + Vz (Hy y+z =%k v dy y+k‘=z)

which is exactly the induction hypothesis.

We have already proved the following results:

Lemma 2.2

Rob. + Vx (O+x =k — x= k:)

(#2) Rob. - Vavy (Sy+z =k — S(y+z)=k)
Rob. . Vxq (il + 19 = xg «—— X0 = i1+z'2)
[4.4)  Rob. . Vg (i1 iz = xg < w0 = i1-i2)
Rob. + i#0 (anyieN, i#0)

(4.6) Rob.  i#j (anyi,jeN, i#j)
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Rob. . VaVy (y #0— x+y # O)
(4.8) Rob. - VaVy (z+y=0-— (z=0 A y=0))
Rob. + Vr —x <0
@10) Rob. . Vz (z<n<—(z=0v 2=50 v ... v z=n))
@11) Rob. - Vz (z<n v n<uz).
Proof of Lemma @

See Examples 2.1} 2.2} 2.3} 2.4} [2.5} 2.6, 2.7 2.8} 2.9}

Lemma 2.3

Let A = N"*! be representable. If the following function f € NN") is total, then f is
representable.
flr, .. yin) = puk (kyig, ... i,) € A

Proof of Lemma |2.3:
Assume ¢(xg,x1,...,2,) represents the set A. We claim the function f is represented by

the formula
o(zo, 1, ...y xn) A Yy <zo —0(Y,T1,. .., Tn).

We need to show that for all ¢1,...,i, €N
Rob. + Vag <f(11,,2n) =0 <« (Lp(mo,il,...,in) A Yy < xg —'cp(y,z‘l,...,in)>).

(We write 4 for iq,...,i, and 7 for iy,..., i)

(=) (1) by the very definition of f and the fact that ¢(zg,z1,...,x,) represents A we
trivially have :

Rob. . o(f(7), 7)

which is equivalent to

Rob. . Vg <f(7) =x9 — go(xo,_i)))
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(2) To show
Rob. + Vg (f(_z)) =1x9 — Yy < x0 —¢(y, T))

we show the equivalent
Rob. . ¥y (y< f(7) — —p(y, 7))

We have two cases

if £(7) = 0: we make use of Rob. . Vx —xz <0 which settles this case.

if £(7) = k + 1: by the very definition of f and the fact that o(zg,z1,...,2zy)
represents A we trivially have :

Rob. - —(0,7) A =p(50, %) A ... A —p(k, 7))

which sums up to

Rob.  Vy ((yz() vy=50v ... v y=k:)—>ﬂ<p(y,7))
by@ Rob. b Vo [zr<n«— (z=0v 2=50 v ... v z=n)] we
obtaiﬁ

Rob. - Yy (y<k+1—(y=0v y=50 v ... v y=k))

which yields
Rob. . Yy (y <k+1— ﬁgp(y,_i))).

(<) we need to show
Rob. . Vg <(<p(:vo,7) A Yy <@g w(y,T)) — f(7) = wo)-

We prove the result by contraposition, which means we prove
Rob. . Vg <f(7) # 10 — ﬂ<s0(wo,7) A Yy < o w(y,_i))))-

By @:: Rob. - Vo (z<n v n<z) we have

—
(3

Rob. . Vao (vo < f(7) v f(7) < o)
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Which is also
Rob. +. Vzo (2o < F(7) v f(Q)<zo v xo= f(?))
so that we only need to prove
Rob. . Vg ((zo <f(7) v (7)< x9) —> ﬁ<<,0(:£0,7) A Yy < g ﬁgp(y,7)>>.

We will successively prove

(1) Rob. +. Vg <$0 < f(7) — ﬁ(go(mo,?) A Yy <z ﬁcp(y,_i)))>.

We have two cases:

if £(7) = 0: we make use of

Rob. . VYV —x <0

which settles this case.

if f(7) =k+ 1: by

A _ _ _
@Rob. . Vx [m<n<—>(m—0\/$—50v vx—n)]
we obtain
Rob. + Vg (1:0<k:+1—>(x0=0\/:c0=3()\/ \/:E()Zk))

and by the very definition of f:
Rob. . —(0,7) A =(S0,7) A ... n —p(k, )
which gives
Rob. + Vg (mo <k+1— ﬁgp(xo,_z')))
which settles this case.
(2) Rob. . Yxq <f(7) <xy — ﬂ(gp(aso,?) A Yy <z ﬂp(y,7))>.

By the very definition of f:
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Thus
Rob. Vg (f(_z)) <xzyg — Ty <z go(y,?))

ie.,
Rob. +— Vg <f(_z)) <xzy — —Vy<xg ﬁgo(y,T)>

which yields what we want.

(1)| and(2)| finish the proof.

O
Theorem 2.1: Chinese remainder Theorem
Suppose ng,ni,...,n; are positive integers which are pairwise co-prime. Then, for any
given sequence of integers ag,ai,...,ar there exists an integer = solving the system of

simultaneous congruences

r = ag mod ng
T = a mod nq
r = ai mod 1.

Proof of Theorem E

We set

o = an
i<k
and notice that for each ¢ < k the two integers n; and n% are co-prime. By Bézout, there
exist coefficients ¢;, d; € Z such that

[0
¢y +d;-— =1

if we set
€; = di .

we see that

e, = 1 mod n;
ee. = 0  modn; (anyj#1)
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It follows immediately that

5=Zaz"€z‘

i<k

is a solution to the system.

Lemma 2.4: Go6del’s 5-function

There exists some function 8 € N®) which is both representable and Prim. Rec. such
that for all k£ € N and every sequence ng, n1,...,n, there exist a,b € N such that

B(Oaa,b) = TNyo
ﬁ(laa’b) =

B(k’aab) : ng.

Proof of Lemma E

The function is defined? by

B(i,a,b) = b~ ({a(l;}l)“} ai+1) + 1))

This shows that it is Prim. Rec.. To show that [ is representable we consider the formula
xg < S(we-Sx1) A Jy < as <y~5(m2-5$1)) +x0 = T3

To show that this formula represents the function 3, we need to show that for all i1, 79,43 €
N

Rob. I—c Va:g (ﬂ(il,ig,ig) =20 <> To < S(iQ-Sil) A\ Hy < i3 (y-S(ig-Sil))+x0 = 23>

which is left as a tedious but straightforward exercise.

Now given ng,ni,...,ng, in order to find a and b, we consider any integer m that satisfies
both
(1) m=2k+1 (2) m! = max{ng,n1,...,nk}.

We set a = m! so that we make sure that a + 1,a-2+1,...,a-k+ 1,a-(k+ 1)+ 1 are
co-prime. To see this, we proceed by contradiction and consider there exists some prime
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number p that divides both a(i + 1) + 1 and a(j + 1) + 1 for some 0 < i < j < k. Then p
also divides
a(j+1)+1 — (a(i+1)+1) =a(j —i) =m!(j—1i)

Since m > (j — %) holds, p divides m! which contradicts p divides m!(i + 1) + 1.

The Chinese Remainder Theorem ([2.1)) guarantees that there exists some integer b that
satisfies

b = ng mod a + 1
b = ng moda-2+1
b = ny moda-(k+1)+1
We chose m such that a = m! > max{ng,ni,...,n;} in order to insure n; < a(i + 1) + 1

for every integer ¢ < k. This makes certain that for each i < k we have (i, a,b) = n;.

O]

“B(i,a,b) is the remainder of the division of b by a(i + 1) + 1.

Lemma 2.5

If both functions g € NV) and h e NO"*) are representable, then the function f e N (N
defined by recursion below is also representable.

{f(?,o) = 9(7)
f(?7y+1) = h(Tvyaf(E)ay»'

Proof of Lemma E

We let 2 stand for x1,...,x, and assume g € N®) and h e NO*) are represented
respectively by ¢q(xo, @) and ¢p (2o, @, Tpt1, Tpt2)-
We also consider the following formula that represents the S-function [7:

o(zo, 1, T2, 23) := xo < S(w2-Sw1) A Ty < 23 (y~S(w2~S$1)) +x0 = T3

Instead of ¢(zo,z1,x2, x3) we prefer the formula ¢g(xg, 1, x2, 23) below which also obvi-
ously represents S but in a strong way.

wp(xo, 1,22, 23) 1= @(x0,x1,22,23) AN Yy < z9 —0(y, 1, %2, 23)

because for any integers i, k we have
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Rob. . VavbVag [[(pg(k,i,d,g) A g05($0,i,&,5)] — 10 = k]
This holds because
Rob. I, Vg [w0¢k—>ﬂ(xo<kvk‘<xo) vV zg<k v k:<3:0]
and by @ Rob. +— Vzx (:Jc <n v n< x) , this comes down to
Rob. . Vxq [m0¢k—>x0<k v k<x0]
and by the definition of both ¢z and k we have

(1) Rob. . VYavb¥xzg [[cpﬁ(k,i,d, b) Az < k| — —pa(xo, i, a, Vl;)]
(2) Rob. 1 Yavbvay [[@g(k;,i,d, b) A k< z0] —> —ps(x0,i,d, vi))].
which yields the following which is also logically equivalent to what we want:

Rob. + VavbVz [[:Bo #k A g05(k,i,d,l;)] — ﬂcpg(xg,i,d,l;)].

The formula the we choose to represent f is the following formula ¢ ¢(xg, z1,...,2ps1). We
use the notation @ = x1,...,x, so that ¢s(zo, x1,...,Tps1) = @f(T0, T, Tps1) =

33bVi < wpeq Jy Iz on(z, 7,0, y)

Soﬁ(x(% Tp+1, av 5)

In order to show that this formula ¢ f(xo, @, z,+1) represents f, we need to prove that for
all integers iy, ..., ip, ip4+1 (We write 7 for iy, ... ,ip) we have
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Rob. -, Yxo | 3a3bVi < ipyq Jy 32

305(1‘07 ip-‘rlv du l;)

(<) We first prove

—

Rob. - Yao | f(7 yipr1) = w0 —> 3a3Vi < ipyq Jy 32

Godel & Recursivity

> f(T sips1) = 20

@ﬂ(an ip-‘rlv a, 6)

We consider the sequence of integers f (7, 0),...,f (7, ip+1). Following the proof of
Lemma we obtain two integers a and b to make the S-function work. Since the

formulas ¢g, g4, ¢n, respectively represent the functions 3, g, h, we have
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together with

Rob. - ¢p(g(7),0,a,b) A ¢u(g(7), 7)

Rob. [ SD,B(f(Taip+1)aip+lvaa b)

and for each integer n < ipy1

Rob. . @(£(7m),m,0,6) A en(F(Tn+1), T f(T,m)) A s(F(Tyn+ 1), Sn,a,0).

hence we have

Rob. . Vxq

F(T yipr1) = 20 —> /\

k<ipii1

from which we logically derive

A
0s(f(7 k), k,a,b)
A\
on(F(7T, k+1), 7k, f(7,k))
A\
0s(f(7,k +1),Sk,a,b)
A\

(,05(550, ip+17 a, b)
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A

vy, k, a,b)
N

Rob. +- Vao | f(Tips) =20 — /\ 3y 3 on(z, 7 k,y)
k<ip i1 A

(2, Sk,a,b)

A

Spﬁ(lb? 7;1)+17 a, b)

Furthermore, we know from

@ Rob. b Yo [r<ne—>(2=0v =50 v ... v z=n)]
that
Rob. = Vi (ggiz)ﬂ‘—’[g:() vi=1v ... v Ezipﬂ]),

Thus we obtain
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Rob. . Vg

and finally

Rob. + Vo

f( ) ,ip+1) =9 — Vi < ip+1 dy 3z

—

F(T yipi1) = xg — 3a 30 Vi <ipyi Iy 32

which completes the first part of the proof.

(=) We need to show

—

i=0— gy, 1)
A
vp(y:i,a,b)

A
on(z, 7 ,1,y)

A
(2, Si,a,b)
A

@5(‘/1:07 ip—&-l; a, b)

905($Oa /L.erl, &7 B)
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Rob. + Vao | 3630V < ipyy Jy 32 n(z, T ,1,y) s F(Tips1) = @0

which really is the following formula

Rob. - Yao | 3a3bVi | i < ipp1 — Jy 3z on(z, 7 ,1,y) s f(T yips1) = 2o

¢ﬁ($07 Z.erl? d: B)

By@ Rob. . Vo [z<n<—(z=0v =50 v ... v z=n)| thisisequiv-

alent to
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- f(Tvierl) = To
kéierl

A
Rob. 1= Vo [ 3a3bvi | [ \/ i=k| >33z | wnlz iiy)
A

(Pﬁ(x()v ip-‘rh da B)

which is equivalent tolﬂ

Rob. k. Vo [ 3adbvi | /\ |i=k—Hdz| enlz

- f(_i)‘/ip-&-l) = 2o
k<ip+1

which again is equivalent to
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Rob. +. Vao |3adb| A\ Iy 3z

which is equivalent to

Rob. +. Vo | 3adb... IyIz... | /\
k<i kgip+l
lp+1

and also to

A
sy, k. a,b)
A
on(z, Tk, Y)
A
wp(z, Sk, a,b)
A

905('%.0’ 7;17-"-17 da 5)

k=0 — @g(yr, ©)

A\

05(yk: k@, b)
A

on(zr, 14k, yr)
A\

0p(2k, Sk, a,b)
A

90,3(%0, Z-p+17 CNI,, 5)

[ k=0— wg(y,T) i

- f(77ip+1) = Zo

—>f(l7lp+1):l'0
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— — b d

©q(yo, 1)

A

05(yk: k. a,b)
A

Rob. k- Vao |3adb...3ydze... | A | #nlem 7 ko)
k<ipi1 k<ipt1 A

(pg(zk,Sk,&,E)
A

@ﬂ(foaip+1ydal;)

and also to

Rob. b Yao¥avh.. Vyvz... | N\ | enlem 0K )
— .
k<ip+1 h<ip i1 A

Spﬂ(zku Skv a’a ZN))

A

Finally, making use of the following three facts:

SD,B(-TOa ip+17 da 6)

- f(_i)aierl) = Zo

- f(_l)aip+1) = X0

(1) ¢gp represents 3 in a strong way since we also have for all integers k, n

Rob. . VavbVz [[gog(n,k:,&,l;) n pp(xo, k, a, l;)] — 3 = n]

(2) @4 represents g
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(3) ¢, represents h

At last, by induction on 7,41 we show

[ gl 1)
A [ w=9(7) ]
08 (Yk, k, @, b) A
Rob. k. Vavh. . Vyvz... | N A - A k= f(7 k)
k<ipi1 k<ipi1 SOh(Zk, _71)7 k, yk) k<ipi1 /\
A = (7, k+1)
v(zk, Sk, a, l~)) i )

ip+1 = 0: we only need to prove

[ oo, 7) ]
A [ w=g(7) ]
©3(yo,0,a, b)
Rob. -, YaviVyo¥zo A | w=1(7,0)
on(z0, 7,0, 90) N
A 20 =f(7,1)
©s(20, 50, a, b) i :

which directly follows from the fact that ¢, and ), represent respectively g and
h.

ip+1 = n+ 1: we assume
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[ Sag(yO,_i)) i
/\ [ Yo = 9(7) ]
(pﬁ(ykakvdﬁ B) /\
Rob. k. Vavb . Vy¥ze... | /\ A — A\ | w=/00k)
k<n - k<n
k<n on(2s 15k, Yk) A
QOIB(Zk,Sk,EL, 5) ) :

We only need to show

(P,B(Zn;n+ 1adal~7) Yn+1 = f(77n+ 1)
Rob. . YaVb¥z,Vyni1V2ni1 A — A
Qoﬁ(yn-‘rlvn—i_laavg) Zn+1 :f(_l>7n+2)

A

Soh(zn+17 _7;)7 n+ 1ayn+1)

which holds because:

(1) since g represents (8 in a strong way we have

Rob. VdVBVyn+1[[g05(f(7,n +1),n+1,a,b) A ©8(Yn+1,n + 1,4, 5)] — Ypil = f(?,n + 1)]

(2) since ¢y, represents h we have
Rob. I~ vavBVyn+1Vzn+1[[soh(znﬂ,?,n + 1, 4ns1) AYnar = F(T,n+1)] = zn1 = f(T,n+ 2)]

To sum up things, we have obtained
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©q(yo, i)
A\
©5(yk, k, @, b) [ iy = F(Tyipe1) ]
A A
Rob. - Vao¥avh. . Yyvzr. .. | A | enlze Tkw) | — | 0800 ipr1,a.0)
v k<ipi1 A A
2k, Sk, a,b) ©5(x0,ip+1,a,D)
A L |
(0, ip11,d,b)

Once again, since ¢g strongly represents 5 we have
Rob. . VaVavb [[wg(f(T,ip+1),ip+1,d,5) A (pg(xo,ipﬂ,&,g)] — x0 = f(?,n—i— 1)]

which finishes the proof.

O]

“see the proof of Lemma H
bwe have (AvB) — C'=—=(AvB)vC = (—AA—B)vC = (—AvC)A(—Bv(C) = (A — C)A(B — O).

Theorem 2.2

All total recursive functions are representable.

Proof of Theorem @

An immediate consequence of Examples and [2.3] and Lemmas , and
]
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